损失函数的意义及作用(含有帮助理解的例子)

文章正文
发布时间:2025-01-14 02:32

损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。 在各种材料中经常看到的中英文词汇有:误差,偏差,Error,Cost,Loss,损失,代价…意思都差不多,在本书中,使用“损失函数”和“Loss Function”这两个词汇,具体的损失函数符号用J来表示,误差值用loss表示。 “损失”就是所有样本的“误差”的总和,亦即(m为样本数): 在黑盒子的例子中,我们如果说“某个样本的损失”是不对的,只能说“某个样本的误差”,因为样本是一个一个

首页
评论
分享
Top